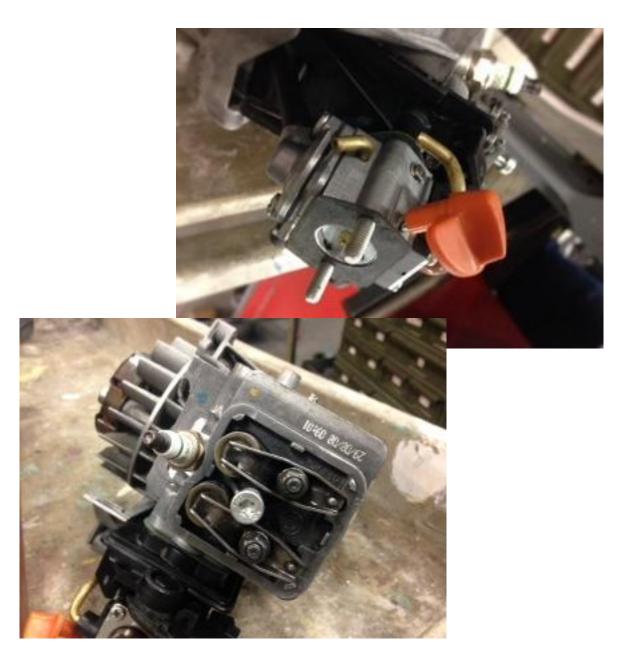
Aqua Scooter

Analysis Presentation

Dylan Cannon, Darin Gilliam, Eli Palomares, Elizabeth Tyler, Jiyan Wang, Tyler Winston


November 13, 2014

Overview

- Problem Definition
- Objectives
- Engine Analysis
 - Gasoline 4-Stroke
 - Propane 4-Stroke
 - Butane 4-Stroke
- Calculations
- Shell Analysis
 - Drag Coefficient
- Conclusion

Problem Definition

 Design a hydrodynamic, inexpensive, aesthetically pleasing Aqua Scooter, with a marine engine that complies with EPA regulations.

Objectives

- Analyze and compare gasoline, propane, and butane 4-stroke engine concepts.
- Quantify the ability for each fuel source to meet EPA regulations.
- Calculate the drag coefficients for the two final outer shell designs.
- Design a propeller that will generate 222 N thrust.

Gasoline Analysis

Dimensions	Aqua Scooter 2-Stroke Engine (AS 650)	4-Stroke Engine (Honda GXH50)
Length (mm)	530	225
Width (mm)	195	274
Height (mm)	320	353
Weight (lb)	16.53	12.1
Bore (mm)	40	41.8
Stroke (mm)	39	36
Displacement (cc)	49	49.4
Power (HP)	2	2.1 @ 7000rpm
Thrust (kg)	22	22
Fuel	Mixture	Unleaded 87 Octane or Higher
Fuel Tank Capacity (L)	2	1.89271
Price (\$)	(+/-) 970	420

[1]

[2]

Propane and Butane Analysis

- Assumptions
 - Calculated using Honda GXH50 converted to propane or butane.
 - Running time of 3 hours.
 - Not Adjusted for Efficiency.
- Results
 - Calculated weight of propane is 12.52 ounces.
 - Calculated weight of butane is 12.50 ounces.

Velocity Based on Thrust Calculations

Variable Values

- $V_e = 2.235 \left[\frac{m}{s}\right]$ • $T = 50lbf * \frac{4.448N}{1 \, lbf} = 222 [N]$
- $A = 0.0324 \ [m^2]$
 - diameter = 8in = .2032m

- $T = \dot{m}V_e \dot{m}V_o$
- $\dot{m} = \rho V_i A$
- $T = 2\rho A V_i^2$
- $T = \rho V_i A (V_e V_0)$

Chemical Calculations

Propane Stoichiometry

• $C_3H_8 + 5O_2 + 18.8N_2 \rightarrow 3CO_2 + 4H_2O + 18.8N_2$

Butane Stoichiometry

• $C_4H_{10} + 9O_2 + 33.84N_2 \rightarrow 4CO_2 + 10H_2O + 33.84N_2$

Air Fuel Ratio Calculations

AF Ratio for 87 Octane is 15:1

AF Ratio for Propane

- $M_{air} = 28.97$
- $M_{propane} = 44.09$
- $AF_{propane} = (5 + 18.8) * \frac{28.97}{44.09}$

•
$$AF_{propane} = 15.66 \frac{lb \ air}{lb \ propane} : 1$$

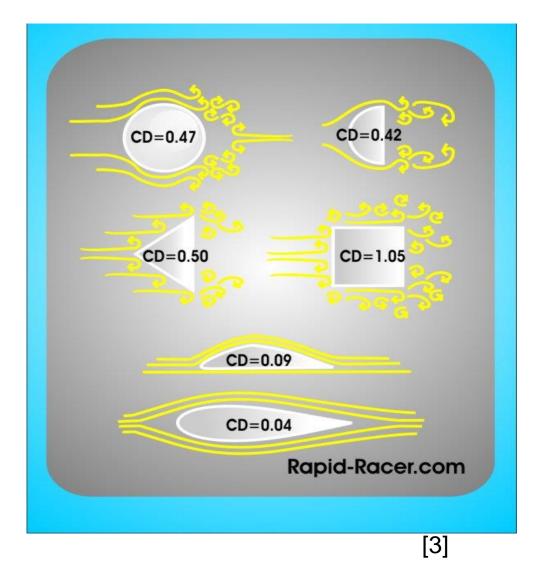
AF Ratio for Butane

•
$$M_{air} = 28.97$$

•
$$M_{butane} = 58.12$$

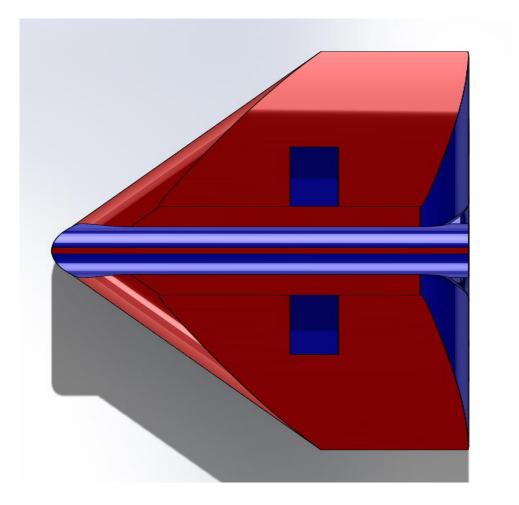
•
$$AF_{butane} = (5 + 33.84) * \frac{28.97}{58.12}$$

•
$$AF_{butane} = 21.36 \frac{lb \ air}{lb \ butane}$$
: 1

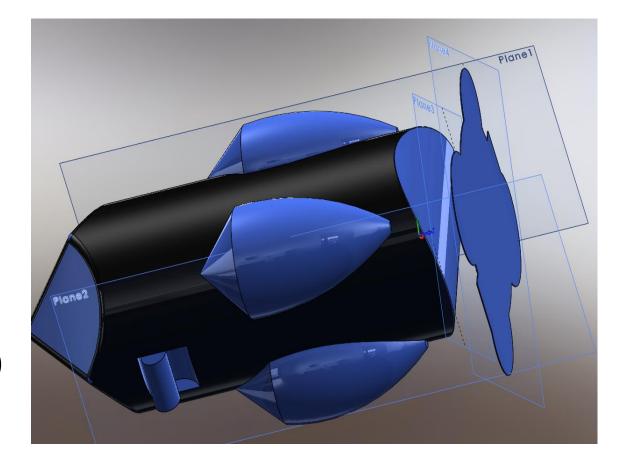

Shell Analysis

Drag Force

 $F = 0.5\rho V^2 C_d A$


Where:

F = Drag force [N] $\rho = Density \left[\frac{kg}{m^3}\right]$ $V = Velocity \left[\frac{m}{s}\right]$ $C_d = Drag Coefficient [unitless]$ $A = Area orthogonal to flow [m^2]$


Shell Analysis- Boomerang

- Assumptions
 - $C_d = 0.5$
 - $A = 1106.3in^2 = 0.714m^2$
 - $\rho = 999 \frac{kg}{m^3}$ • $V_e = 2.235 \left[\frac{m}{s}\right]$
- Drag Force
 - $F = 0.5 \rho V^2 C_d A$
 - $F = 0.5(999)(2.235^2)(.5)(0.714)$
 - F = 890.75 N

Shell Analysis- Triton

- Assumptions
- $C_d = 0.10$
- $A = 513.20in^2 = 0.3311m^2$
- $\rho = 999 \frac{kg}{m^3}$
- $V_e = 2.235 \left[\frac{m}{s}\right]$
- Drag Force
- $F = 0.5 \rho V^2 C_d A$
- $F = 0.5(999)(2.235^2)(.1)(0.3311)$
- F = 82.6N

Shell Analysis cont'd

•
$$v = 2.235 \left[\frac{m}{s}\right]$$

•
$$g = 9.81 \frac{m}{s^2}$$

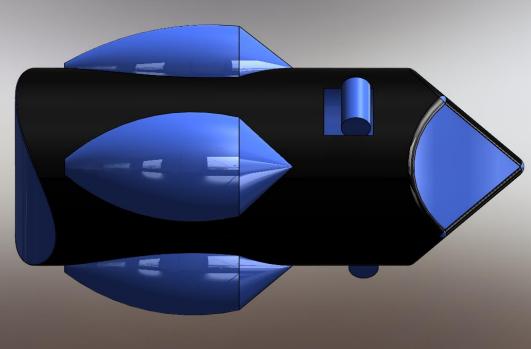
Boomerang

• Froude Number

•
$$Fr = \frac{v}{\sqrt{gL}} = \frac{2.235}{\sqrt{9.81*.6096}} = 0.914$$

Triton

• Froude Number
•
$$Fr = \frac{v}{\sqrt{gL}} = \frac{2.235}{\sqrt{9.81*.9144}} = 0.746$$


Power Calculation

- $V_e = 2.235 \left[\frac{m}{s}\right]$
- $\mathcal{P}_d = \mathbf{F}_d \cdot \boldsymbol{v}$
 - $=\frac{1}{2}\rho v^3 A C_d$
- $\mathcal{P}_{d(boomerang)} = 1990.82W = 2.669hp$
- $\mathcal{P}_{d(Triton)} = 184.611W = 0.2475hp$

Conclusion

- Butane and Propane are viable options for engine fuel
- $\downarrow C_d \downarrow F_d$
- Emissions are lower

References

[1] L. Arnone, M. Janeck, M. Marcacci, R. Kirchberger, M. Pontoppidan and R. Busi, "Development of a direct injection two-stroke engine for scooters," in *Small Engine Technology Conference and Exhibition, November 28, 2001 - November 30,* 2001, .

[2] B. Douville, P. Ouellette, A. Touchette and B. Ursu, "Performance and emissions of a two-stroke engine fueled using high-pressure direct injection of natural gas," in 1998 SAE International Congress and Exposition, February 23, 1998 - February 26, 1998, .

[3] P. Duret, A. Ecomard and M. Audinet, "A new two-stroke engine with compressed-air assisted fuel injection for high efficiency low emissions applications," in *International Congress and Exposition, February 29, 1988 -March 4,* 1988, .

[4] H. Huang, M. Jeng, N. Chang, Y. Peng, J. H. Wang and W. Chiang, "Improvement of exhaust emissions from a two-stroke engine by direct injection system," in *International Congress and Exposition, March 1, 1993 -March 5,* 1993, .

[5] W. Mitianiec, "Direct injection of fuel mixture in a spark ignition two-stroke engine," in SAE 2002 World Congress, March 4, 2002 - March 7, 2002, .

[6] K. Morikawa, H. Takimoto, T. Kaneko and T. Ogi, "A study of exhaust emission control for direct fuel injection two-stroke engine," in *Small Engine Technology Conference and Exposition, September 28, 1999 -September 30,* 1999, .

[7] P. Rochelle and W. Perrard, "Fuel consumption and emission reduction of a small two-stroke engine through air-assisted fuel injection and delayed-charging," in *International Congress and Exposition, March 1, 1999 -March 4,* 1999,.

[8] Stihl KM 130 R. Accessed 10 Oct 2014. *Firewood Hoarders Club.* http://firewoodhoardersclub.com/forums/index.php?threads/stihl-km-130-r-4-mix-engine.3850/

[9] A. Dave, Development of a Reed Valve Model for Engine Simulations for Two-Stroke Engines, 1st ed., SAE International, 2004.

[10] http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node108.html

[11]https://www.youtube.com/watch?v=QvUih9Y2Nmw

Any Questions?